Metallkomplexe mit Tetrapyrrol-Liganden, LIX¹⁾

Redoxpotentiale, Nah-Infrarot-Absorption, Ionenradien sowie Ring-Ring-Abstand in Metall(III)-bis(tetraphenylporphyrinat)-Systemen mit Porphyrinringen in unterschiedlichen Oxidationsstufen

Johann W. Buchler*, Peter Hammerschmitt, Isolde Kaufeld und Jürgen Löffler

Institut für Anorganische Chemie, Technische Hochschule Darmstadt, Hochschulstraße 10, W-6100 Darmstadt

Eingegangen am 21. Februar 1991

Key Words: Lanthanoid porphyrins / Porphyrin double deckers / Metal bisporphyrinates

Metal Complexes with Tetrapyrrole Ligands, LIX ¹⁾. – Redox Potentials, Near-Infrared Absorption, Ionic Radii, and Ring-Ring Distance in Metal{III} Bis(tetraphenylporphyrinate) Systems with Porphyrin Rings in Different Oxidation States

An extended series of tetrabutylammonium salts of bisporphyrinate double decker anions $NBu_4[M^{III}(TPP)_2]^{2)}$ (M = Y, La-Lu except Pm) is described. The complexes are characterized by UV/Vis/NIR and ¹H-NMR spectroscopy, cyclic voltammetry, and spectroelectrochemistry. The redox potentials of the new sandwich compounds and the near-infrared absorption energies of their corresponding oxidation products

Sandwich-Komplexe der Lanthanoid-Ionen³⁻⁶, der Actinoide Uran und Thorium⁷⁾ sowie der Übergangsmetalle Y, Zr und Hf^{1,7d,8,9,10)} mit Porphyrin- und mit Phthalocyanin-Liganden werden gegenwärtig intensiv untersucht (Schema 1). Diese Verbindungen interessieren uns vor allem wegen ihres Charakters als Modellsubstanzen für photosynthetische Reaktionszentren^{3c)}. Während mit den Octaethylporphyrin- und Phthalocyanin-Liganden die nahezu vollständigen Reihen der $M^{III}(P)_2$ (M = Y, La – Lu außer Pm) beschrieben worden sind, kennt man die entsprechenden Sandwich-Komplexe der Tetraarylporphyrine bisher nur von Praseodym^{3a)} und Europium^{3h)}. Über Synthese und Eigenschaften der Tetraphenylporphyrin-Komplexe M(TPP)₂ mit den übrigen dreiwertigen Lanthanoiden und Yttrium wird im folgenden berichtet. Der schon mehrfach beschriebene Cer-Doppeldecker^{3a,i,j)} fällt wegen der Vierwertigkeit des Zentral-Ions aus der Reihe und wird hier nicht behandelt.

Sowohl innerhalb der Reihe der Komplexe $M^{III}(OEP)_2$ (M = Y, La-Lu außer Pm) als auch bei $M(Pc)_2$ (M = Pr-Lu außer Pm) wurde eine lineare Korrelation der Redoxpotentiale und der Energie der bei den Spezies mit Defektelektronen im π -System der Liganden auftretenden Nah-Infrarotabsorptionen mit dem Radius der Zentral-Ionen nachgewiesen^{3c,e,g,40}. Vom diesbezüglichen Verhalten von $M^{III}(TPP)_2$ erwarteten wir weitere Erkenntnisse zum Verständnis der stark gekoppelten π -Elektronensysteme in Bisporphyrinaten.

Synthese der Metall(III)-bis(tetraphenylporphyrinate)

Die Darstellung der Tetraphenylporphyrin-Sandwich-Komplexe mit dreiwertigen Zentral-Ionen erfolgt für die $M(TPP)_2$ and $[M(TPP)_2]^+$ are shown to depend linearly on the ionic radii of the central ions. The gradients of the first and second oxidation potentials are positive whereas those of the third and fourth oxidation potentials are negative. This result is interpreted by means of a qualitative molecular orbital diagram describing the $\pi\pi$ interactions of the four frontier orbitals of the two macrocycles in the double decker molecules.

größeren Ionen La-Gd (außer Pm) durch direkte Umsetzung der Metall(III)-acetylacetonate mit H₂(TPP) in siedendem 1,2,4-Trichlorbenzol (TCB) [Schema 2, (a) und (b)], wie dies schon für die OEP-Komplexe $M(OEP)_2$ (M = La – Tb außer Pm) sowie den TTP-Doppeldecker des Praseodyms beschrieben worden ist 3a,e,f). Mit abnehmendem Ionenradius nimmt die Ausbeute an Sandwich-Komplex ab, die an Monoporphyrinat M(TPP)(acac) dagegen zu, so daß von Tb an kein Bisporphyrinat mehr erhalten wird. Die Sandwich-Komplexe mit kleineren Zentral-Ionen (Tb-Lu, Y) können aber auf dem Wege der zur Synthese der OEP-Derivate entwickelten "Aufstockungsreaktion"^{3e,8a)} [Schema 2, (c) und (d)] aus den Monoporphyrinaten M(TPP)(acac) dargestellt werden. Auch bei dieser Umsetzung fällt die Ausbeute an Doppeldecker mit sinkendem Radius des Zentral-Ions stark ab.

Schema 2. Synthese der Doppeldecker M(TTP)₂ und ihrer Hydrogenderivate H[M(TPP)₂]

Die Abtrennung des wegen der nicht vollständigen Umsetzung noch verbliebenen metallfreien Porphyrins vom Produkt ist vor allem bei M = Yb und Lu wegen der hier besonders geringen Ausbeuten problematisch, gelingt aber durch wiederholtes Chromatographieren und Extrahieren. Da die Hydrogenbisporphyrinate MH(TPP)₂ durch Luftsauerstoff teilweise zu den Neutralverbindungen $M(TPP)_2$ oxidiert werden [Schema 2, (e)], erhält man stets die Redoxgemische $M(TPP)_2/MH(TPP)_2$, die zur Vereinheitlichung gemäß Gl. (1) mit NaOEt/NBu₄Br^{3a)} zu den Tetrabutylammonium-Salzen NBu₄[$M(TPP)_2$] umgesetzt werden. Dieses Reaktionsmedium wirkt offensichtlich schwach reduzierend. Die Salze NBu₄[$M(TPP)_2$] erleichtern zudem wegen ihrer im Vergleich zu den neutralen Bisporphyrinaten erheblich besseren Löslichkeit die Charakterisierung der neuen Sandwich-Komplexe sehr.

$$MH(TPP)_2/M(TPP)_2 \xrightarrow{NaOEt/NBu_4Br} NBu_4[M(TPP)_2]$$
(1)

Analytische Charakterisierung der neuen Verbindungen

[']H-NMR-Spektren: Die Kernresonanzspektren der neuen Bisporphyrinat-Anionsalze NBu₄[M(TPP)₂] beweisen die Konstitution. Die Signale der Porphyrin-Protonen der Verbindungen mit den diamagnetischen Zentral-Ionen Lanthan, Lutetium und Yttrium sind lösungsmittelunabhängig und zeigen die für Sandwich-Komplexe typischen Merkmale, nämlich ein hochfeldverschobenes Pyrrolprotonensignal und die Aufspaltung der Phenylprotonensignale in fünf den ortho-endo-, meta-endo-, para-, meta-exo- und ortho-exo-Phenylprotonen zuzuordnenden Resonanzen (Tab. 1, 2).

Die Signale der Protonen der NBu₄⁺-Ionen der Verbindungen NBu₄[M(TPP)₂] sind im Gegensatz zu denen der Porphyrin-Protonen stark vom verwendeten Lösungsmittel abhängig (Tab. 1, 2). Diese Lösungsmitteleffekte sollen am Beispiel der diamagnetischen Lanthan-Verbindung NBu₄-[La(TPP)₂] beschrieben werden. In [D₅]Pyridin liefert das NBu⁺-Ion Signale, die in Lage und Feinstruktur denen der Referenzverbindung NBu₄Br (α -H: $\delta = 3.25$, β -H: 1.60, γ -H: 1.24, δ -H: 0.84) sehr ähnlich sind Das NBu₄⁺-Ion unterliegt demzufolge in diesem Fall keiner Beeinflussung durch

Tab. 1. ¹H-NMR-Daten der Salze [NBu₄][M(TPP)₂] ([D₅]Pyridin, δ-Werte, TMS)

М	pyr-H ^ë	1)	o∼H ^{b)}	m	-H ^{b)}	р-Н ^{Ь)}	α-H ^{c)}	_{8-H} c)	か -н ^{с)}	_{δ-H} c)
Y	d)	10.05	6.93	8.05	7.21 ^{e)}	7.58 ^{e)}	3.33	1.66	1.28	0.85
La	8.51	9.69	8.02	7.38	7.20	7.70	3.05	1.49	1.18	0.78
Pr	4.03	9.40	-1.76	7.03	4.34	5.97	4.03	2.16	1.64	1.07
Nd	7.95	7.87	5.71	7.19	6.76	7.04	3.58	1.83	1.39	0.91
Sm	7.92	8.73 ^e) 7.21 ^{e)}	7.58 ^e) _{7.21} e)	7.48	3.34	1.70	1.32	0.86
Eu	7.39	12.74	9.00	7.22	6.34	8.13	3.15	1.57	1.21	0.81
Tb	-59.90	34.34	-108.67	6.98	-31.02	-10.10	6.71	4.07	2.87	1.61
Dy	-31.13	23.09	-57.55	6.08	-14.12	-2.36	5.49	3.20	2.87	1.52
Но	-2.60	10.52	-4.56	6.96	3.27	5.52	3.97	2.14	1.63	1.05
Er	21.61	39.48	0.0 ^{e)}	17.71	7.69	12.04	2.22	0.92	0.70	0.49
Tm	21.23	36.24	0.5 ^{e)}	16.63	7.67	11.55	2.28	0.99	0.76	0.54
Yb	9.71	13.25	6.01	9.01	7.56 ^{e)}	8.04	3.23	1.60	1.21	0.80
Lu	d)	10.04	6.80	7.98	7.19 ^{e)}	7.55 ^{e)}	3.31	1.65	1.26	0.83

^{a)} Pyrrol-Protonen. - ^{b)} Phenyl-Protonen. - ^{c)} Protonen des Tetrabutylammonium-Ions. - ^{d)} Signal wurde nicht gefunden. - ^{c)} Teilweise von Lösungsmittel- oder anderen Substanzsignalen verdeckt.

м	pyr-H ^{a)}	c	_{о-Н} ь)	m-	.Hp)	p-H ^{b)}	α-H ^{c)}	ß-Н ^{с)}	か -н ^{с)}	δ-H ^{c)}
Y	8.06 ^d)	9.53	6.59	8.06 ^d	7.26 ^d) 7.61	-1.96	-1.76	-0.48	0.0 ^{d)}
La	8.09	9.13	7.91	6.93	7.30	7.64	-2.29 ^{e)}	-2.29 ^{e)}	-0.71	-0.14
Pr	3.29	8.90	-2.50	6.86	4.16	5.83	18.92	9.83	5.50	2.94
Nd	7.37	7.57	4.96	7.09	6.59	6.97	5.51	2.19	1.64	1.03
Sm	7.46	8.25	6.96	7.46	7.46	7.26 ^{d)}	0.99	0.0 ^{d)}	0.0 ^{d)}	-0.21
Tb	-63.18	32.88	-112.58	-32.24	4.09	-10.94	f)	121.14	61.90	32.28
Dy	-27.61	28.80	-53.57	-8.21	12.28	3.77	f)	74.49	42.00	24.25
Но	1.85	10.34	-6.23	3.95	7.64	4.95	f)	9.5	4.95	3.18
Er	37.32	55.16	15.18	33.27	23.09	27.51	f)	-43.30	-18.55	-1.54
Tm	36.98	52.49	15 .19	32.03	22.5	26.65	f)	-39.84	-16.73	-1.00
Yb	17.87	21.26	14.02	17.32	15.15	16.37	0.68	2.83	5.89	7.26
Lu	g)	9.57	6.60	g)	g)	7.59	-1.63 ^{e)}	-1.63 ^{e)}	-0.33	0.04

Tab. 2. ¹H-NMR-Daten der Salze [NBu₄][M(TPP)₂] (in CDCl₃, δ-Werte, TMS)

^{a)} Pyrrol-Protonen. — ^{b)} Phenyl-Protonen. — ^{c)} Protonen des Tetrabutylammonium-Ions. — ^{d)} Teilweise von Lösungsmittel- oder anderen Substanzsignalen verdeckt. — ^{e)} Signal von α - und β -H überlagert. — ^{f)} Signal wurde nicht gefunden. — ^{g)} Breite Signale im Bereich von $\delta = 7.0$ bis 8.5, Zuordnung nicht möglich.

das Porphyrinsystem, da in diesem Lösungsmittel offenbar freie NBu₄⁺- und [La(TPP)₂]⁻-Ionen vorliegen. Im weniger polaren CDCl₃ bilden sich dagegen Ionenpaare, in denen die Protonen des NBu₄⁺-Ions dem Ringstromeffekt des Porphyrinsystems unterliegen (ähnliche Effekte sind bereits bei verschiedenen Europium-bisporphyrinaten beobachtet worden^{3h,8b)}). Ihre Signale sind gegenüber dem Spektrum in [D₅]Pyridin deutlich hochfeldverschoben, und zwar die Protonen H_{α} am stärksten, H_{δ} am wenigsten. Eine Annäherung des NBu₄⁺-Ions an die Stickstoffatome der Porphyrin-Liganden, an denen die negative Ladung der [M(TPP)₂]⁻-Anionen lokalisiert sein dürfte, ist wegen der raumerfüllenden Phenylsubstituenten nur entlang der vierzähligen Achse des Bisporphyrinat-Anions möglich [idealisiert kann D_{4d} -Symmetrie angenommen werden, wie sie näherungsweise bei allen strukturell charakterisierten Porphyrin-Sandwich-Komplexen beobachtet wurde, z. B. $Ce(OEP)_2^{3d}$ und $Zr(TPP)_2^{1b}$]. Beim Vorliegen eines schnellen Assoziations-Dissoziations-Gleichgewichtes ist für das Ionenpaar NBu⁺/[M(TPP)₂]⁻ nur ein aufgrund der magnetischen Anisotropie des Bisporphyrinat-Systems hochfeldverschobenes Signal für jeden Satz äquivalenter Protonen des unkoordinierten NBu4+-Ions zu erwarten. Für die Verbindung NBu₄[(Ph₃P)CoI₃], bei der in Abhängigkeit vom Lösungsmittel ebenfalls eine Ionenpaarbildung auftritt, wurde gezeigt, daß die magnetische Anisotropie des Cobalt-Ions den stärksten Effekt auf die Protonen H_{α} und den schwächsten auf die Protonen H_{δ} des NBu₄⁺-Ions ausübt¹¹). Gleiches gilt offenbar für den Einfluß des Ringstroms des Porphyrinsystems im Ionenpaar $NBu_4^+/[La(TPP)_2]^-$. Die Protonen an H_{α} zeigen mit $\delta =$ -2.29 die größte, die an H₈ mit -0.14 die geringste Hochfeldverschiebung gegenüber dem Spektrum des freien NBu_4^+ -Ions (s. o.).

Der Vergleich der Lage der NBu⁺-Protonensignale der drei Bisporphyrinatsalze mit diamagnetischem Zentral-Ion zeigt, daß die oben beschriebene Hochfeldverschiebung aufgrund der Ionenpaarbildung in der Reihe La – Y – Lu, also mit abnehmendem Ionenradius, ebenfalls abnimmt. Hierfür können zwei Ursachen diskutiert werden: Zum einen ist eine stärkere schüsselförmige Verzerrung der Porphyrinliganden bei der Koordination an ein kleineres Metallzentrum denkbar, und zum anderen kann eine Verringerung der π -Elektronendichte durch den stärkeren Elektronenzug, den das kleinere Zentral-Ion aufgrund seines größeren Ladung/Radius-Verhältnisses ausübt, eintreten. Beide Effekte könnten für die Verringerung des Ringstromeffektes bei abnehmendem Radius des Zentral-Ions verantwortlich sein.

In den ¹H-NMR-Spektren der Salze NBu₄[M(TPP)₂] mit paramagnetischen Zentral-Ionen treten zusätzlich zu den für die diamagnetischen Yttrium- und Lanthanverbindungen beschriebenen Effekten noch die vom jeweiligen M^{III}-Ion verursachten isotropen Verschiebungen auf. In [D₅]Pyridin sind davon nur die Signale der Porphyrin-Protonen betroffen, während in CDCl₃ wegen der dort auftretenden Ionenpaarbildung (siehe oben) die Signale des NBu₄⁺-Ions ebenfalls starke Verschiebungen im Vergleich zum diamagnetischen Lanthan-Komplex zeigen (Tab. 1, 2).

Cyclische Voltammetrie: Die Redoxpotentiale der neuen Bisporphyrinate wurden mittels cyclischer Voltammetrie in den Lösungsmitteln CH_2Cl_2 und DMF bestimmt, als Leitelektrolyt diente jeweils Tetrabutylammonium-hexafluorophosphat, NBu_4PF_6 . In CH_2Cl_2 können vier Oxidationsschritte beobachtet werden, während in DMF zwei Oxidations- und zwei Reduktionschritte erfaßbar sind. Bei allen Redoxschritten handelt es sich um Ein-Elektronen-Übergänge, die gemäß Schema 3 durch die Potentiale E_1 bis E_6 charakterisiert werden.

Messungen unter "supertrockenen Bedingungen"¹²), die den cyclovoltammetrischen Nachweis der Reduktion einfacher Tetraarylporphyrinate bis hin zum Hexa-Anion ermöglichten¹³), würden möglicherweise auch im Fall der Bis(tetraphenylporphyrinate) die Beobachtung weiterer als der Schema 3. Redoxschritte der Doppeldecker $[M(TPP)]^n$ (3 > n > -3), spezifiziert durch ihre Redoxpotentiale E_1 bis E_6

$$[\mathsf{M}(\mathsf{TPP})_2]^{3+} \xrightarrow[\epsilon_1]{e^-} [\mathsf{M}(\mathsf{TPP})_2]^{2+} \xrightarrow[\epsilon_2]{e^-} [\mathsf{M}(\mathsf{TPP})_2]^{+} \xrightarrow[\epsilon_3]{e^-} \mathsf{M}(\mathsf{TPP})_2$$

$$M(TPP)_2 \xrightarrow[E_4]{-e^-} [M(TPP)_2]^- \xrightarrow[E_5]{-e^-} [M(TPP)_2]^2 \xrightarrow[E_6]{-e^-} [M(TPP)_2]^3$$

oben genannten Redoxprozesse erlauben. Wir waren jedoch vornehmlich an der Lage und insbesondere an der Metallabhängigkeit der Potentiale $E_1 - E_4$ interessiert und beschränkten uns daher auf die Untersuchung der in CH₂Cl₂ oder DMF leicht zugänglichen Potentialfenster, die die Messung der Potentiale $E_1 - E_6$ erlaubten.

Bei Messungen in CH_2Cl_2 ist zu beachten, daß die Bisporphyrinat-Anionen $[M(P)_2]^-$ in diesem Lösungsmittel einer teilweisen Protonierung durch Wasser- oder Säurespuren unterliegen (Gl. (2)¹⁴).

$$[M(P)_2]^- \xrightarrow{+H^+} MH(P)_2$$
 (2)

Die dabei entstehenden Hydrogenbisporphyrinate $MH(P)_2$ zeigen ein kompliziertes, von Protonierungs- und Deprotonierungsschritten geprägtes Redoxverhalten¹⁴, auf das hier nicht näher eingegangen werden soll.

Der erste Oxidationsschritt des Anions $[M(TPP)_2]^-$, E_4 , zeigt mit gegenüber den Übergängen E_1 bis E_3 deutlich kleineren Peakströmen den oben beschriebenen Effekt der teilweisen Bildung der Hydrogenbisporphyrinate (Abb. 1). Zugabe der Base 2,6-Lutidin verhindert die Protonierung der Bisporphyrinat-Anionen^{14a}, so daß für E_3 und E_4 dann gleichgroße Peakströme beobachtet werden (Abb. 1). Allerdings schränkt der Lutidinzusatz das zugängliche Potentialfenster so weit ein, daß E_1 und E_2 nicht mehr erfaßt werden können. Die Redoxpotentiale von M^{III}(TPP)₂ in CH₂Cl₂/ NBu₄PF₆ sind in Tab. 3 zusammengefaßt.

Abb. 1. Cyclisches Voltammogramm von NBu₄[La(TPP)₂] in CH₂Cl₂/NBu₄PF₆ (·····) und in CH₂Cl₂/NBu₄PF₆/Lutidin (----) v = 100 mV/s

Tab. 3. Redoxpotentiale der Salze $[NBu_4][M^{III}(TPP)_2]$ (CH_2Cl_2/ NBu_4PF_6, V vs. SCE)

м	E4	E3	E2	E1
La	0.165	0.508	1.183	1.441
Pr	0.162	0.467	1.237	1.519
Nd	0.132	0.434	1.219	1.512
Sm	0.117	0.425	1.252	1.555
Eu	0.112	0.430	1.262	1.580
Gd	0.110	0.425	1.270	1.595
ть	0.097	0.428	1.285	1.610
Dy	0.090	0.423	1.298	1.625
Но	0.090	0.408	1.288	1.625
Y	0.070	0.387	1.270	1.615
Er	0.083	0.413	1.310	1.668
Tm	0.093	0.403	1.303	1.665
Yb	0.093	0.398	1.305	1.675
Lu	0.073	0.390	1.300	1.678

Im Lösungsmittel DMF tritt keine Protonierung der Anionen $[M(TPP)_2]^-$ auf, so daß die Redoxprozesse E_3 und E_4 hier auch ohne Basenzusatz reversibles Verhalten zeigen. Wegen des kathodisch verschobenen Potentialfensters können die beiden Oxidationen E_1 und E_2 in DMF nicht mehr erfaßt werden, dafür aber zwei weitere reversible Ein-Elektronen-Reduktionen E_5 und E_6 (Schema 3). Die Ergebnisse der Messungen in DMF/NBu₄PF₆ sind in Tab. 4 zusammengefaßt.

Tab. 4. Redoxpotentiale der Salze [NBu₄][M^{III} (TPP)₂] (DMF/ NBu₄PF₆, V vs. SCE)

м	E3	E4	E5	E6
La	0.660	0.395	-1.602	-1.890
Pr	0.622	0.365	-1.610	-1.915
Nd	0.612	0.355	-1.620	-1.920
Sm	0.572	0.335	-1.625	-1.930
Gd	0.552	0.315	-1.635	-1.955
Tb	0.547	0.310	-1.637	-1.957
Dy	0.537	0.299	-1.640	-1.962
Но	0.522	0.285	-1.645	-1.965
Y	0.518	0.280	-1.645	-1.967
Er	0.517	0.277	-1.645	-1.967
Tm	0.500	0.270	-1.647	-1.972
Yb	0.495	0.255	-1.652	-1.980
Lu	0.495	0.255	-1.650	-1.985

An den Bisporphyrinat-Anionen $[M(TPP)_2]^-$ können somit im untersuchten Potentialbereich (-2.2 bis +1.8 V) vier Oxidations- und zwei Reduktionsprozesse beobachtet werden, bei denen es sich stets um reversible Ein-Elektronenübergänge handelt, die ausschließlich die Porphyrinsysteme betreffen (in der Reihe der Lanthanoid-bisporphyrinate ist nur Ce redoxaktiv^{3g,ij,14a}). Auf die aus den Tab. 3 und 4 bereits abzulesende Abhängigkeit der Lage der Redoxpotentiale vom Zentral-Ion wird weiter unten eingegangen. Für eine Auswahl der analogen OEP-Komplexe werden die bisher noch nicht publizierten Werte für E_1 und E_2 in Tab. 5 mitgeteilt.

Tab. 5. Redoxpotentiale einiger Bisporphyrinate $M(OEP)_2$ (CH₂Cl₂/NBu₄PF₆, V vs. SCE)

M	El	E2	_{E3} ³ g)
Pr	1.425	1.110	0.24
Eu	1.497	1.150	0.185
Y	1.515	1.135	0.14
Yb	1.530	1.130	0.115

Spektroelektrochemie: Die spektroelektrochemische Untersuchung der Salze NBu₄[M(TPP)₂] ermöglicht die UV/ Vis/NIR-spektroskopische Charakterisierung der durch potentiostatische Elektrolyse erzeugten, ein- und zweifach oxidierten Produkte M(TPP)₂ und [M(TPP)]⁺ (Abb. 2). Die Spektren der Salze NBu₄[M(TPP)₂] weisen die von NBu₄-[Pr(TPP)₂]^{3a)} bereits bekannten Merkmale auf: die Soret-Bande tritt bei etwa 410 nm und damit gegenüber dem metallfreien Porphyrin um etwa 10 nm hypsochrom verschoben auf, und im sichtbaren Bereich des Spektrums sind zwei Banden bei ca. 500 und 614 nm zu beobachten (Tab. 6). Die Oxidation zu den Neutralkomplexen M(TPP)₂ hat erwartungsgemäß erhebliche Auswirkungen auf die Spektren (Tab. 7): Die Soret-Banden werden um 6 (für La) bis 14 nm (für Lu) hypsochrom verschoben und verlieren an Intensität. Im sichtbaren Bereich verschwinden die beiden Banden der Anionen, dafür treten zwei wenig intensive Banden bei ca. 810 und 714 nm auf. Im NIR-Bereich erscheint eine breite und intensive Bande, deren Lage sich systematisch mit dem Ionenradius des jeweiligen Zentralmetalls ändert. Die Maxima dieser NIR-Banden liegen zwischen 1655 (für La) und 1230 nm (für Lu).

Tab. 6.	UV/Vis/NIR-Daten	der	Salze	[NBu ₄][M	$[^{III}(TPP)_2]$	in
CH_2	Cl ₂ /2,6-Lutidin (1000):1); λ _ι	_{nax} [nm]], in Klamı	nern log ε	

м	Soret		Ι		11	
La	412	(5.73)	562	(3.93)	610	(3.87)
Pr	412	(5.74)	562	(3.92)	61 2	(3.65)
Nd	410	(5.74)	562	(3.97)	614	(3.65)
Sm	410	(5.81)	562	(4.03)	616	(3.81)
Eu	410	(5.80)	560	(4.04)	614	(3.79)
Gd	410	(5.71)	562	(3.97)	618	(3.69)
Тb	408	(5.67)	562	(3.99)	616	(3.67)
Dy	408	(5.62)	560	(3.97)	616	(3.63)
Но	408	(5.47)	560	(3.93)	614	(3.57)
Y	408	(5.58)	564	(3.89)	614	(3.47)
Er	408	(5.69)	562	(3.96)	6 16	(3.54)
Tm	408	(5.67)	564	(3.96)	6 16	(3.52)
Yb	408	(5.57)	564	(3.94)	612	(3.51)
Lu	408	(5.56)	562	(3.92)	610	(3.50)

Tab. 7. UV/Vis/NIR-Daten der Doppeldecker $M^{II}(TPP)_2$ in $CH_2Cl_2/2$,6-Lutidin (1000: 1), λ_{max} [nm], in Klammern log ϵ

M	Soret	I	II	NIR
La	406 (5.40)	716 (3.48)	800 (3.46)	1655 (3.87)
Pr	406 (5.42)	716 (3.55)	818 (3.49)	1500 (3.93)
Nđ	404 (5.35)	714 (3.53)	816 (3.39)	1465 (3.85)
Sm	400 (5.39)	716 (3.57)	820 (3.49)	1400 (4.02)
Eu	400 (5.39)	716 (3.61)	816 (3.47)	1365 (4.00)
Gd	398 (5.31)	714 (3.27)	814 (3.37)	1360 (3.89)
Tb	398 (5.29)	714 (3.51)	810 (3.32)	1340 (3.92)
Dy	398 (5.29)	712 (3.49)	810 (3.32)	1310 (3.91)
Но	396 (5.23)	716 (3.44)	810 (3.25)	1290 (3.88)
Y	396 (5.23)	716 (3.43)	816 (3.26)	1285 (3.85)
Er	396 (5.40)	714 (3.59)	810 (3.43)	1260 (4.14)
Tm	394 (5.29)	714 (3.49)	810 (3.29)	1240 (4.04)
Yb	394 (5.25)	716 (3.46)	810 (3.26)	1235 (3.93)
Lu	394 (5.20)	716 (3.39)	800 (3.21)	1230 (3.89)

Die bei der weiteren Oxidation erhaltenen Bisporphyrinat-Kationen $[M(TPP)_2]^+$ zeigen wiederum veränderte UV/ Vis/NIR-Spektren (Tab. 8). Die Soret-Banden werden im Vergleich zu den Neutral-Komplexen $M(TPP)_2$ nochmals intensitätsschwächer und um weitere 20 nm hypsochrom verschoben. Der sichtbare Bereich weist eine neue Bande auf, deren Lage mit dem Ionenradius varijert und zwischen 614 (La) und 574 nm (Lu) auftritt. Die Bande im NIR-Bereich nimmt an Intensität zu und wird ebenfalls hypsochrom verschoben. Sie liegt zwischen 1220 (La) und 910 nm (Lu).

Die spektroelektrochemischen Untersuchungen an den neuen TPP-Sandwichkomplexen zeigen die von anderen Bisporphyrinaten bekannten charakteristischen Effekte der Oxidation auf die UV/Vis/NIR-Spektren^{3g,h,j,14}). Besonders hervorzuheben ist das Auftreten einer Absorption im NIR-Bereich bei den Neutralverbindungen M(TPP)₂ und den

Tab. 8. UV/Vis/NIR-Daten der Kationen [M^{III}(TPP)₂]⁺ in CH₂Cl₂/2,6-Lutidin (1000: 1), λ_{max} [nm], in Klammern log ϵ

Ln	Soret	;	I		NIR	
La	384	(5.24)	614	(4.23)	1220	(4.23)
Pr	384	(5.22)	604	(4.11)	1140	(4.18)
Nd	382	(5.17)	600	(4.15)	1100	(4.21)
Sm	380	(5.23)	594	(4.16)	1055	(4.36)
Eu	378	(5.29)	592	(4.14)	1030	(4.31)
Gd	378	(5.16)	590	(4.07)	1015	(4.18)
Tb	376	(5.18)	586	(4.05)	990	(4.21)
Dy	376	(5.29)	584	(4.06)	972	(4.21)
Но	376	(5.12)	582	(3.98)	960	(4.11)
Y	374	(5.15)	584	(4.01)	960	(4.14)
Er	374	(5.43)	580	(4.22)	945	(4.45)
Tm	372	(5,21)	579	(4.01)	930	(4.22)
Yb	372	(5.23)	576	(4.07)	920	(4.23)
Lu	372	(5.17)	574	(3.95)	910	(4.13)

Kationen $M(TPP)_2^+$ mit einfach bzw. zweifach oxidierten Porphyrinsystemen. Diese Banden zeigen zudem ebenso wie die Redoxpotentiale eine deutliche Abhängigkeit vom Zentral-Ion, auf die im folgenden eingegangen wird.

Radienabhängigkeit der Eigenschaften von M^{III}(TPP)₂: Nachdem sich herausgestellt hatte, daß die Energien der NIR-Absorptionsbanden der π-Radikal-Doppeldecker M- $(OEP)_2$ (M = La - Lu) linear mit dem Ionenradius korreliert werden können^{3c,e)}, wurde eine entsprechende Korrelation auch mit den Redoxpotentialen E_4 festgestellt, die zur Bildung von M(OEP)₂ führen^{3g,14a)}. Neuere Untersuchungen an Bisporphyrinaten mit vierwertigen Zentralionen^{1b,7d}) und an Bisphthalocyaninaten^{4f)} lieferten analoge Ergebnisse. Mit abnehmendem Radius der Zentral-Ionen nimmt offenbar der Abstand der Porphyrin-Ringe voneinander ab, und die Wechselwirkungen ihrer n-Systeme werden stärker. Eine Reihe von Beobachtungen an Bisporphyrinaten mit einem oder zwei Defektelektronen im aromatischen System führte zur Formulierung eines vollständig über beide Porphyrin-Liganden delokalisierten π -Elektronensystems, das durch ein qualitatives, auf die von Gouterman¹⁵⁾ eingeführten vier Grenzorbitale beschränktes Molekülorbitalschema beschrieben werden kann^{5,6,14a)} (Abb. 3). Eine Beteiligung der f-Orbitale der Lanthanoid-Ionen kann dabei mit Ausnahme des Cers ausgeschlossen werden. Das folgt zum einen aus der linearen Abhängigkeit (siehe unten) der Energien der Nah-Infrarot-Absorptionen und der Redoxpotentiale vom Ionenradius (bei Beteiligung der f-Elektronen wären Unstetigkeiten zu erwarten), und zum anderen aus der Einordnung des Yttrium-Sandwich-Komplexes in die Reihe der Lanthanoid-Doppeldecker an genau der Stelle, die dem Radius des Yttrium-Ions entspricht.

Diese MO-Beschreibung bedeutet, daß die Defektelektronen der π -Radikale M^{III}(P)₂ delokalisiert sind und ein Einfachminimum-Potential aufweisen. Das früher von uns verwendete Bild eines intramolekularen Charge-Transfer-Komplexes für M^{III}(P)₂^{3c,3,3,14a}) würde ein Doppelminimum-Potential beinhalten. Die NIR-Banden wären dann "interne Charge-Transfer-"(CTI-)Banden.

Abb. 3. Qualitatives, vom Vierorbital-Modell abgeleitetes MO-Diagramm für Porphyrin-Sandwich-Komplexe. (Die gezeichnete Elektronenverteilung entspricht den Radikal-Spezies $M^{III}(P)_2$ bzw. den Radikalkationen $M^{IV}(P)_2^+$)

Die Grenzorbitale der isolierten Porphyrinsysteme (a_{1u}, a_{2u}, e_g) erfahren eine Aufspaltung in energetisch angehobene (a_2, b_2, e_3) und abgesenkte (b_1, a_1, e_1) Orbitale im Bisporphyrinat. Die mit abnehmendem Ionenradius zunehmende Anhebung des HOMO des Sandwich-Komplexes liefert die Erklärung für die in der gleichen Folge eintretende Erleichterung der ersten und zweiten Oxidation von M(OEP)2^{3g,14a)} und M(Pc)₂⁴⁰. Die diesen Schritten entsprechenden Potentiale E_3 und E_4 (Gl. 4 und Tab. 5) der neuen Bisporphyrinate $NBu_4[M(TPP)_2]$ zeigen die von $M(OEP)_2$ und $M(Pc)_2$ bekannte lineare Korrelation mit den Radien der Zentralionen (Ionenradien für Koordinationszahl 816); Abb. 4); die Steigung der Regressionsgeraden für das Potential E4 ist mit 41 cm^{-1}/pm allerdings deutlich kleiner als in der OEP-Reihe $(92 \text{ cm}^{-1}/\text{pm})^{3g,14a}$. Auf dieses Ergebnis, das auf einen im Falle der OEP-Sandwichkomplexe stärker Porphyrin-Porphyrin-antibindenden Charakter des HOMO hinweist^{7d}, wird weiter unten eingegangen. Bei den neuen TPP-Sandwich-Komplexen konnten nun zudem erstmals die Potentiale der dritten und vierten Oxidation (E_1, E_2) einer ganzen Serie von Bisporphyrinaten bestimmt werden. Deren Abhängigkeit vom Ionenradius ist in der in Abb. 4 dargestellten Auftragung zu erkennen. Wiederum tritt eine lineare Korrelation auf, aber in umgekehrter Richtung als bei den beiden ersten Oxidationsschritten E_3 und E_4 . Diese zunächst unerwartete anodische Verschiebung der Potentiale E_1 und E_2 mit sinkendem Ionenradius wird durch das MO-Schema (Abb. 3) aber verständlich: Die Entfernung des dritten und vierten Elektrons aus dem π -System des Bisporphyrinats betrifft das Orbital a₁, das im Gegensatz zum Orbital b₂, aus dem die beiden ersten Elektronen entfernt werden, eine mit sinkendem Radius des Zentral-Ions einhergehende energetische Absenkung erfährt.

In der Reihc der Verbindungen $M(OEP)_2$ tritt diese Umkchrung der Radienabhängigkeit beim Schritt E_2 nicht im gleichen Ausmaß ein (Tab. 5)¹⁷⁾. Dieses abweichende Verhalten ist ebenso wie die stärkere Radienabhängigkeit der Potentiale E_4 in der OEP- im Vergleich zur TPP-Reihe vermutlich darauf zurückzuführen, daß bei OEP-Komplexen im allgemeinen das a_{1u} - oberhalb des a_{2u} -Orbitals liegt, während es sich bei TPP-Komplexen umgekchrt verhält. Das in Abb. 3 dargestellte Molekülorbital-Diagramm gilt daher nur für TPP-Sandwich-Komplexe; bei OEP-Doppeldeckern sind Verschiebungen der relativen Orbitalenergien zu erwarten, die zu den beobachteten Unterschieden in den Eigenschaften der beiden Verbindungsreihen führen könnten.

> 1.8 1.6 1.4 g 1.2 [V vs. 1.0 ш 0.8 0.6 E3 0.4 E4 0.2 0 95 100 105 110 115 120 Lu T Ho Dy Gd Sa Pr YbErY TbEu Nd La lonenradien (pm)

Abb. 4. Radienabhängigkeit der Redoxpotentiale E_1 bis E_4 der Salze [NBu₄][M^{III}(TPP)₂] (V vs. SCE, CH₂Cl₂/NBu₄PF₆, r_1 [pm] für KZ = 8¹⁶)

Das Auftreten der NIR-Banden bei den Bisporphyrinaten mit oxidierten Porphyrinsystemen kann mit dem MO-Schema (Abb. 3) ebenfalls leicht erklärt werden. Nach Entfernen eines oder zweier Elektronen aus dem HOMO kann ein Elektron aus einem tiefer liegenden Orbital in dieses halb- oder unbesetzte Orbital angehoben werden. Die hierfür nötige Energie ist vom Ausmaß der Aufspaltung der beiden höchsten besetzten Orbitale im Sandwich-Komplex und damit wiederum vom Radius des Zentral-Ions abhängig. Wie schon in der Reihe der M^{III}(OEP)₂^{3e,g)} und der von den Neutralkomplexen M^{IV}(P)₂ abgeleiteten Mono- und Dikationen^{1b,8c)} beobachtet wurde, nimmt auch in der Serie der Neutralverbindungen M^{III}(TPP)₂ und der Kationen M^{III}(TPP)₂⁺ die Energie der NIR-Absorption mit sinkendem Ionenradius linear zu (Abb. 5). Der Gradient der Regressionsgeraden der Auftragung Wellenzahl der NIR-Bande/ Ionenradius entspricht mit $-109 \text{ cm}^{-1}/\text{pm}$ etwa der Summe der Beträge der Gradienten von E_4 (41 cm⁻¹/pm) und E_2 ($-51 \text{ cm}^{-1}/\text{pm}$), was auch zu erwarten ist, wenn die Nah-Infrarot-Absorption einem Übergang zwischen den von diesen beiden Redoxprozessen betroffenen Orbitalen zuzuordnen ist. Der Gradient von $-109 \text{ cm}^{-1}/\text{pm}$ ist darüber hinaus praktisch genauso groß wie der entsprechende Wert der Verbindungen M(OEP)₂ ($-99 \text{ cm}^{-1}/\text{pm}$)^{3e.g.14a)}. Das Ausmaß der $\pi\pi$ -Wechselwirkungen zwischen den Porphyrin-Liganden im TPP-Doppeldecker ist demnach nur wenig kleiner als im OEP-Sandwich-Komplex und wird durch die denkbare Abstoßung der raumerfüllenden Phenylsubstituenten nicht entscheidend geschwächt.

Abb. 5. Radienabhängigkeit der Nah-Infrarotabsorption von $M(TPP)_2$ und $[M(TPP)_2]PF_6$ (cm⁻¹, r_1 [pm] für KZ = 8¹⁶)

Zusammenfassung: Den schon länger bekannten Octaethylporphyrin-Sandwichkomplexen M^{III}(OEP)₂ (M =La-Lu, Y) wurden die entsprechenden Tetraphenylporphyrinkomplexe gegenübergestellt. Deren elektro- und spektroelektrochemische Charakterisierung zeigte, daß auch bei diesen Bisporphyrinaten der Radius des Zentral-Ions ein zur Beschreibung der Größe der nn-Wechselwirkungen zwischen den Liganden geeigneter Parameter ist. Die von den $M^{III}(OEP)_{2}$ - und $M^{IV}(P)_{2}$ -Komplexen^{1b,3c,e,g,8c,14a)} schon bekannten linearen Abhängigkeiten der Potentiale der ersten und zweiten Oxidation des Porphyrinsystems und der Nah-Infrarot-Absorption vom Radius des Zentral-Ions treten auch bei den neuen M^{III}(TPP)₂-Komplexen auf. Zudem wurde erstmals auch die Radienabhängigkeit der Redoxpotentiale E_1 und E_2 der in den früheren Arbeiten nicht

erfaßten dritten und vierten Oxidation der Sandwich-Komplexe festgestellt. Diese Potentiale zeigen wiederum eine lineare Korrelation mit dem Ionenradius, aber mit anderem Vorzeichen des Gradienten als die Potentiale E_3 und E_4 der ersten und zweiten Oxidation. Dieses Verhalten läßt sich mit einem schon früher formulierten qualitativen Molekülorbitalschema erklären, das durch die richtige Beschreibung der Radienabhängigkeit der neuen experimentellen Daten eine weitere Bestätigung erfährt.

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie, der Vereinigung von Freunden der Technischen Hochschule Darmstadt und der Otto Röhm Gedächtnisstiftung (Darmstadt) gefördert. Den Herren Professor J. J. Veith und M. Fischer danken wir für die Massenspektren, den Herren Dr. S. Braun und U. Mayer für die NMR-Spektren und der Bayer AG für die Überlassung von Trichlorbenzol.

Experimenteller Teil

Elektronenanregungsspektren: Hewlett-Packard HP 8451 A "Diode Array", Zeiss DMR 21 und Bruins-Instruments Omega 10. – IR: KBr-Preßlinge, 4000 bis 400 cm⁻¹, Perkin-Elmer 397. – NMR: Bruker WM 300. – MS: MAT 311 A der Fa. Varian, Felddesorption (FD). – Elementaranalysen: Mikroanalytisches Laboratorium des Instituts für Organische Chemie der TH Darmstadt. – Elektrochemische Experimente: Die Ausrüstung wurde an anderer Stelle beschrieben¹⁶⁾. Alle gemessenen Potentiale sind auf eine gesättigte (KCl) Kalomel-Elektrode (Ingold) bezogen und gegen die internen Standards 9,10-Diphenylanthracen und Ferrocen korrigiert^{14a,18)}; Leitelektrolyt Tetrabutylammonium-hexafluorophosphat in einer Konzentration von 0.1 mol/l.

Spektroelektrochemische Untersuchungen: Jeweils ca. 4 mg [NBu₄][M(TPP)₂] in 50 ml 0.1 M NBu₄PF₆/CH₂Cl₂ wurden potentiostatisch elektrolysiert. Vor Beginn der Elektrolyse wurde ein Potential von -0.25 V angelegt und ein UV/Vis/NIR-Spektrum der Salze aufgenommen. Anschließend wurde zur Erzeugung der Neutralkomplexe ein Potential zwischen E_3 und E_4 der jeweiligen Verbindung angelegt. Nach Entnahme einer Probe zur UV/Vis- und NIR-spektroskopischen Analyse wurde das Potential zur Darstellung der Kationen [M(TPP)₂]PF₆ auf einen Wert 0.3 V anodisch von E_3 eingestellt und nach beendeter Elektrolyse eine Probe zur UV/Vis/NIR-spektroskopischen Charakterisierung entnommen. Der Endpunkt der jeweiligen Elektrolyse wurde anhand der übertragenen Ladungsmenge und des Abfalls des Elektrolysestromes bestimmt.

Verwendete Materialien: CH₂Cl₂ und CHCl₃ wurden destilliert und an basischem Al₂O₃ von Säurespuren befreit. Dimethylformamid (Merck) wurde zunächst über Molekularsieb (4 Å) getrocknet und anschließend über CuSO₄ unter Ar bei Raumtemp. destilliert. 1,2,4-Trichlorbenzol (TCB, Fluka) wurde an basischem Al₂O₃ gereinigt. 2,6-Lutidin (Merck) wurde an neutralem Al₂O₃ gereinigt. H₂(TPP)^{19a}, die Metallacetylacetonate M(acac)₃ · H₂O^{19b,c)} und NBu₄PF₆^{19d)} wurden nach Literaturvorschriften dargestellt. Ferrocen und Butyllithium (1.6 mol/1 in *n*-Hexan) wurden von Merck, 9,10-Diphenylanthracen von Aldrich bezogen.

Versuch 1: Synthese der Redoxgemische von [5,10,15,20-Tetraphenylporphyrinato(-2)-5,10,15,20-tetraphenylporphyrinato(-1)]metall(III) und Hydrogenbis[5,10,15,20-tetraphenylporphyrinato-(-2)]metall(III) $[M(TPP)_2$ und $MH(TPP)_2$ (M = La - Gd)] sowie von 2,4-Pentandionato(-1)[5,10,15,20-tetraphenylporphyrinato(-2)]metall(III) [M(TPP)(acac) (M = Y, Pr - Lu)]: 310 mg (0.5 mmol) H₂(TPP) und 700 mg (1.5 mmol) M(acac)₃· H₂O (M = La-Gd) wurden in 50 ml TCB 18 h unter Stickstoff zum Sieden erhitzt. Nach Entfernen des Lösungsmittels wurde der Rückstand in Toluol aufgeschlämmt, filtriert und das Filtrat an Al₂O₃ (II b, 4×15 cm) chromatographiert. Mit Toluol wurde zunächst eine rotviolette Lösung von nicht umgesetztem H₂(TPP) eluiert, bevor mit CHCl₃ als zweite Fraktion eine grünbraune Lösung des Sandwich-Komplexes erhalten werden konnte. Das Lösungsmittel wurde entfernt und das im Rückstand befindliche Redoxgemisch MH(TPP)₂/M(TPP)₂ durch Digerieren mit Toluol von evtl. vorhandenen Resten an H₂(TPP) befreit. Ausbeuten: 25 (Gd) bis 92% (La). – MS: s. Tab. 9.

Tab. 9. Massenspektrometrische Daten der neuen Komplexe MH(TPP)₂/M(TPP)₂ (Ionisierung durch Felddesorption)

м	Mgef	M _{ber}	für Isotop
La	1364	1364	¹³⁹ La
Pr	1366	1368	¹⁴¹ Pr
Nd	1368	1367	142 _{Nd}
Sm	1378	1376	¹⁵² Sm
Eu	1376	1376	¹⁵¹ Eu
Gd	1379	1379	¹⁵⁵ 6d
Tb	1382	1384	¹⁵⁹ ть
Dy	1388	1389	¹⁶⁴ Dy
Но	1390	1390	165 _{Ho}
Y	1314	1313	⁸⁹ Y
Er	1392	1391	¹⁶⁶ Er
Tm	1394	1394	¹⁶⁹ Tm
Yb	1400	1398	¹⁷⁴ ҮЬ
Lu	1401	1399	¹⁷⁵ Lu

Für M = Y, Pr-Lu verblieb am Kopf der Säule ein rosaroter Ring von M(TPP)(acac), der mit Toluol/Pyridin/Eisessig (50:20:3) eluiert wurde. Für M = Y, Eu - Lu wurde nach Auswaschen dieser Fraktion mit 0.2 M KOH und anschließend mit H₂O die organische Phase abgetrennt und das Lösungsmittel i. Vak. entfernt. Der rosarote Rückstand wurde 2 d im Hochvak. getrocknet. Ausb. 44 (Eu) bis 91% (Lu).

Versuch 2: Synthese des Redoxgemischs $MH(TPP)_2/M(TPP)_2$ (M = Y, Eu - Lu) durch Aufstockungsreaktion: Zu einer Lösung von 155 mg (0.25 mmol) H₂(TPP) in 60 ml TCB wurde unter Argon langsam 1 ml (1.6 mmol) Butyllithium-Lösung getropft und 15 min gerührt. Dieser braungrünen Lösung wurden 220 mg (0.25 mmol) M(TPP)(acac) zugesetzt. Es wurde 3 h zum Sieden erhitzt. Nach Entfernen des Lösungsmittels wurde der Rückstand in Toluol aufgeschlämmt und filtriert. Das Filtrat wurde an Al₂O₃ (I b, 4×15 cm) chromatographiert. Mit Toluol erhielt man eine rotviolette, nichtumgesetztes H₂(TPP) enthaltende Fraktion. Mit CHCl₃ konnte anschließend eine ebenfalls rotviolette Lösung eluiert werden, die H₂(TPP) und Spuren des Produktes MH(TPP)₂/M(TPP)₂ enthielt. Die dritte, braungrüne Fraktion lieferte das Produkt mit Spuren an H₂(TPP). Am Kopf der Säule war zu Beginn der Chromatographie ein brauner Ring zu sehen, der sich mit CHCl₁ ebenfalls in Bewegung setzte. Hierbei handelt es sich um nicht identifizierte Porphyrin-Abbauprodukte.

Der vor der Chromatographie zurückbehaltene Filterrückstand wurde in CHCl₃ gelöst und gleichfalls an Al_2O_3 (I b, 4 × 15 cm) chromatographiert. Mit Toluol eluierte man eine Lösung von H₂(TPP), anschließend mit CHCl₃ das Redoxgemisch MH(TPP)₂/ M(TPP)₂ in einer dunkelbraunen Fraktion. Nach Entfernen des Lösungsmittels wurde durch Digerieren mit Toluol evtl. vorhandene Spuren an H₂(TPP) abgetrennt. Ausbeuten: 4 (Lu) bis 76% (Eu).

Versuch 3: Synthese der Tetra(n-butyl)ammonium-bis[5,10,15,20tetraphenylporphyrinato(-2)]metallate(III), [NBu₄][M(TPP)₂] $(M = Y, La - Lu au\beta er Pm)$: Eine Lösung von 50 mg (0.35 mmol) des Redoxgemischs MH(TPP)₂/M(TPP)₂ in 100 ml CH₂Cl₂ wurde unter Rühren mit 5 ml Natriumethanolatlösung (2 mol/l) versetzt. Es wurde noch 1 h bei Raumtemp. gerührt und dann das überschüssige Ethanolat mit 25 ml 50proz. wäßrigem EtOH unter starkem Rühren hydrolysiert, wobei eine hellbraune, trübe Mischung entstand. Dieser Mischung wurden 50 mg (0.15 mmol) NBu₄Br zugesetzt, und es wurde 1 h stark gerührt. Die organische Phase wurde abgetrennt, mit Na2SO4 getrocknet und das Lösungsmittel entfernt. Der blauviolette Rückstand wurde in MeOH aufgeschlämmt, abfiltriert und i. Hochvak. 2 d bei 60°C getrocknet. Ausbeuten 70-90%. - Elementaranalysen: Tab. 10.

Гаb. 10. Elementaranalysen	der Salze	[NBu ₄]	[M(TPP)])2]
----------------------------	-----------	---------------------	----------	-----

Summenformel	(Molmasse)		% C	% H	% N
C104H92N9La	(1606.93)	Ber. Gef.	77.74 77.57	5.77 5.63	7.84 7.78
C ₁₀₄ Hg2NgPr	(1608.84)	Ber. Gef.	77.64 76.55	5.76 5.61	7.83 7.51
C104H92N9Nd	(1612.17)	Ber. Gef.	77.48 77.08	5.75 5.65	7.82 7.79
C ₁₀₄ Hg2NgSm	(1618.29)	Ber. Gef.	77.19 76.97	5.73 5.70	7.79 7.63
C104H92N9Eu	(1619.98)	Ber. Gef.	77.11 76.15	5.73 5.35	7.78 7.64
C104H92N9Gd	(1625.18)	Ber. Gef.	76.86 76.19	5.70 5.51	7.76 7.59
C104H92N9Tb	(1626.9)	Ber. Gef.	76.78 75.60	5.70 5.55	7.75 7.54
C104H92N9Dy	(1630.4)	Ber. Gef.	76.61 75.56	5.69 5.50	7.73 7.66
C104H92N9Ho	(1632.9)	Ber. Gef.	76.50 76.33	5.68 5.65	7.72 7.68
C104H92N9Y	(1556.84)	Ber. Gef.	80.24 80.13	5.96 5.79	8.09 8.03
C104H92NgEr	(1635.2)	Ber. Gef.	76.39 75.90	5.67 5.58	7.71 7.66
C104H92N9Tm	(1636.9)	Ber. Gef.	76.31 76.21	5.66 5.58	7.70 7.66
C104H92N9Yb	(1641.0)	Ber. Gef.	76.12 75.93	5.65 5.48	7.68 7.63
C104Hg2NgLu	(1642.9)	Ber. Gef.	76.03 76.06	5.64 5.60	7.67 7.65
	Summenforme 1 C104H92N9La C104H92N9Pr C104H92N9Pr C104H92N9Sm C104H92N9Gu C104H92N9Gu C104H92N9Tb C104H92N9Tb C104H92N9H0 C104H92N9Y C104H92N9Fr C104H92N9Tm C104H92N9Tm C104H92N9Tm	Summenforme1 (Molmasse) C104H92N9La (1606.93) C104H92N9Pr (1608.84) C104H92N9Pr (1608.84) C104H92N9Nd (1612.17) C104H92N9Sm (1618.29) C104H92N9Eu (1618.29) C104H92N9Eu (1619.98) C104H92N9Gd (1625.18) C104H92N9Tb (1626.9) C104H92N9Dy (1630.4) C104H92N9Dy (1632.9) C104H92N9Tb (1556.84) C104H92N9Tm (1635.2) C104H92N9Tm (1636.9) C104H92N9Tb (1641.0) C104H92N9Tb (1641.0) C104H92N9Tb (1641.0)	Summenformel (Molmasse) C104H92N9La (1606.93) Ber. Gef. C104H92N9Pr (1608.84) Ber. Gef. C104H92N9Nd (1612.17) Ber. Gef. C104H92N9Sm (1618.29) Ber. Gef. C104H92N9Sm (1618.29) Ber. Gef. C104H92N9Eu (1619.98) Ber. Gef. C104H92N9Gd (1625.18) Ber. Gef. C104H92N9Tb (1626.9) Ber. Gef. C104H92N9Tb (1630.4) Ber. Gef. C104H92N9Tb (1632.9) Ber. Gef. C104H92N9Tv (1556.84) Ber. Gef. C104H92N9Tr (1635.2) Ber. Gef. C104H92N9Tm (1636.9) Ber. Gef. C104H92N9Tm (1636.9) Ber. Gef. C104H92N9Tb (1641.0) Ber. Gef. C104H92N9Tb (1641.0) Ber. Gef.	Summenforme1 (Mo1masse) % C C104H92N9La (1606.93) Ber. 77.74 Gef. 77.57 C104H92N9Pr (1608.84) Ber. 77.64 Gef. 76.55 C104H92N9Nd (1612.17) Ber. 77.19 Gef. 77.08 C104H92N9Sm (1618.29) Ber. 77.19 Gef. 76.97 C104H92N9Eu (1619.98) Ber. 77.11 Gef. 76.15 C104H92N9Eu (1619.98) Ber. 77.11 Gef. 76.15 C104H92N9Eu (1625.18) Ber. 76.78 Gef. 75.56 C104H92N9Tb (1626.9) Ber. 75.56 C104H92N9Dy (1630.4) Ber. 76.51 Gef. 75.56 C104H92N9Dy (1630.4) Ber. 76.50 Gef. 75.56 C104H92N9Tb (1556.84) Ber. 80.24 Gef. 80.13 C104H92N9Tr (1635.2) Ber. 76.31 Gef. 75.50 C104H92N9Tm (1636.9) Ber. 76.31 Gef. 75.93 C104H92N9Tb (1641.0) Ber. 76.31 Gef. 75.93 C104H92N9Tb (1641.0) Ber. 76.31 Gef. 75.93 C104H92N9Tb (1641.0) Ber. 76.12 Gef. 75.93 C104H92N9Lu (1642.9) Ber. 76.03 Gef. 76.03	Summenformel (Molmasse) % C % H C104H92N9La (1606.93) Ber. 77.74 5.77 C104H92N9Pr (1608.84) Ber. 77.64 5.76 C104H92N9Pr (1608.84) Ber. 77.64 5.76 C104H92N9Nd (1612.17) Ber. 77.18 5.75 C104H92N9Sm (1618.29) Ber. 77.19 5.73 C104H92N9Eu (1619.98) Ber. 77.11 5.73 C104H92N9Gd (1625.18) Ber. 76.15 5.51 C104H92N9Tb (1626.9) Ber. 76.76 5.70 C104H92N9Dy (1630.4) Ber. 76.78 5.70 C104H92N9Dy (1630.4) Ber. 76.50 5.55 C104H92N9Ho (1632.9) Ber. 76.50 5.65 C104H92N9Ho (1632.9) Ber. 76.50 5.65 C104H92N9Ho (1632.9) Ber. 76.50 5.65 C104H92N9Th (1556.84) Ber. 80.24 5.96 C104H92N9Er (1635.2) Ber. 76.31 5.65 C104H92N9Tm (1636.9) Ber. 76.31 5.65 C104H92N9Tm (1636.9) Ber. 76.31 5.65 C104H92N9Tm (1636.9) Ber. 76.31 5.65

^{1) 1a)} Herrn Professor Michael Hanack zum 60. Geburtstag gewid-met. – ^{1b)} LVIII. Mitteilung: J. W. Buchler, A. De Cian, J. Fischer, P. Hammerschmitt, R. Weiss, Chem. Ber. **124** (1991) 1051.

^{2) 2a)} Kurzformeln der Porphyrin-Liganden siehe Schema 1. -^{2b)} Verwendete Abkürzungen: H(acac), Acetylaceton; TCB = 1,2,4-Trichlorbenzol; NIR, Nah-Infrarot; v = Spannungsvorschubgeschwindigkeit; SCE = gesättigte (KCl) Kalomel-Elek-

- ^{3) 3a)} J. W. Buchler, H. G. Kapellmann, M. Knoff, K. L. Lay, S. Pfeifer, Z. Naturforsch., Teil B, **38** (1983) 1339. ^{3b)} J. W. Buchler, M. Knoff in Optical Properties and Structure of Tetrapyroles (G. Blauer, H. Sund, Eds.), S. 91, De Gruyter, Berlin 1985. – ³⁰⁾ J. W. Buchler, K. Elsässer, M. Kihn-Botulinski, B. Scharbert, S. Tansil, ACS Symp. Ser. **321** (1986) 94. – ^{3d)} J. W. Buchler, A. De Cian, J. Fischer, M. Kihn-Botulinski, H. Paulus, R. Weiss, J. Am. Chem. Soc. 108 (1986) 3652. – ³⁶⁾ M. Kihn-Botulinski, Dissertation, Technische Hochschule Darmstadt, 1986. - W. Buchler, A. De Cian, J. Fischer, M. Kihn-Botulinski, R. Weiss, *Inorg. Chem.* 27 (1988) 339. - ^{3g)} J. W. Buchler, B. Scharbert, J. Am. Chem. Soc. 110 (1988) 4272. - ^{3h)} J. W. Buchler, J. Löffler, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ⁾ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ⁾ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ⁾ J. W. Buchler, J. Löffler, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ⁾ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ⁾ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ⁾ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ⁾ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ⁾ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ⁾ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ⁾ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ⁾ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - ³ⁱⁱ J. W. Buchler, J. Differ, Z. Naturforsch., Teil B, 45 (1990) 531. - A. De Cian, J. Fischer, P. Hammerschmitt, J. Löffler, B. Scharbert, R. Weiss, Chem. Ber. 122 (1989) 2219. – ³⁾ J. W. Buchler, K. Elsässer, M. Kihn-Botulinski, B. Scharbert, Angew. Chem. 98
- ⁽¹⁾ (1986) 257; Angew. Chem. Int. Ed. Engl. 25 (1986) 286.
 ⁽⁴⁾ ⁽⁴⁾ ^(a)] I. S. Kirin, P. N. Moskalev, Y. A. Makashev, Russ. J. Inorg. Chem. 10 (1965) 1065. ^{4b)} K. Kasuga, M. Tsutsui, R. C. Petterson, K. Tatsumi, P. P. van Opdenbosch, E. F. Meyer, Jr., J. Am. Chem. Soc. 102 (1980) 4836. ^{4c)} A. De Cian, M. Moussavi, J. Fischer, R. Weiss, Inorg. Chem. 24 (1985) 3162. ^{4d)} M. Moussavi, A. De Cian, L. Weiss, Inorg. Chem. 24 (1985) 3162. ^{4d)} M. Moussavi, A. De Cian, P. Weiss, Inorg. Chem. 24 (1985) 3162. ^{4d)} M. Moussavi, A. De Cian, M. Weiss, Inorg. Chem. 24 (1985) 3162. ^{4d)} M. Moussavi, A. De Cian, P. Weiss, Inorg. Chem. 27 (1989) J. Fischer, R. Weiss, Inorg. Chem. 24 (1985) 3162. - ⁶⁶ M. Moussavi, A. De Cian, J. Fischer, R. Weiss, Inorg. Chem. 27 (1988) 1287. - ^{4c} H. Konami, M. Hatano, A. Tajiri, Chem. Phys. Lett. 160 (1989) 163. - ⁴¹ H. Konami, M. Hatano, N. Kobayashi, T. Osa, Chem. Phys. Lett. 165 (1990) 397.
 ^{5) 5a} X. Yan, D. Holten, J. Phys. Chem. 92 (1988) 409. - ^{5b} O. Bilsel, J. Rodriguez, D. Holten, J. Phys. Chem. 94, (1990) 3508.
 ^{6) 6a} R. J. Donohoe, J. K. Duchowski, D. F. Bocian, J. Am. Chem. Soc. 110 (1988) 6119 - ^{6b} J. K. Duchowski, D. F. Bocian, J. E. Bocian, J.
- Soc. 110 (1988) 6119. $-^{6b)}$ J. K. Duchowski, D. F. Bocian, J. Am. Chem. Soc. 110 (1988) 6119. $-^{6b)}$ J. K. Duchowski, D. F. Bocian, J. Am. Chem. Soc. 112 (1990) 3312. $-^{6c)}$ J.-H. Perng, J. K. Duchowski, D. F. Bocian, J. Phys. Chem. 94 (1990) 6684. $-^{6d)}$ J. K. Duchowski, D. F. Bocian, Inorg. Chem. 29 (1990) 4158. – ^{6e)} J. K. Duchowski, D. F. Bocian, J. Am. Chem. Soc. 112 (1990) 8807
- ^{7) 7a)} G. S. Girolami, S. N. Milam, K. S. Suslick, Inorg. Chem. 26 (1987) 343. $-^{7b)}$ G. S. Girolami, S. N. Milam, K. S. Suslick, J. Am. Chem. Soc. 110 (1988) 2011. $-^{7c)}$ O. Bilsel, J. Rodriguez, D. Holten, G. S. Girolami, S. N. Milam, K. S. Suslick, J. Am. Chem. Soc. 112 (1990) 4075. $-^{7d}$ K. Kim, W. S. Lee, H.-J. Kim, Chem. Soc. 112 (1990) 4075. S.-H. Cho, G. S. Girolami, P. A. Gorlin, K. S. Suslick, Inorg.
- ⁽¹⁾ Chem. 30 (1991) 2654.
 ⁽⁸⁾ Sa) J. W. Buchler, J. Hüttermann, J. Löffler, Bull. Chem. Soc. Jpn. 61 (1988) 71. ^{8b)} J. Löffler, Dissertation, Techn. Hochschule Darmstadt, 1989. ^{8c)} P. Hammerschmitt, Dissertation, Techn.
- ⁹⁾ ^{9a)} L. G. Tomilova, N. A. Ovchinnikova, E. A. Luk'yanets, Zh. Obshch. Khim. 57 (1987) 2100. ^{9b)} J. Silver, P. J. Lukes, P. K. Key, J. M. O'Connor, Polyhedron 8 (1989) 1631.
- ¹⁰⁾ Das kürzlich beschriebene Titan-bis(phthalocyaninat) unterscheidet sich von den zuvor angesprochenen Sandwich-Komplexen durch eine zusätzliche kovalente Verknüpfung der beiden Liganden: C. Ercolani, A. M. Paoletti, G. Pennesi, G. Rossi, A.
- Chiesi-Villa, C. Rizzoli, J. Chem. Soc., Dalton Trans. 1990, 1971. ¹¹⁾ ^{11a} G. N. La Mar in NMR of Paramagnetic Molecules (G. N. La Mar, W. De W. Horrocks, Jr., Eds.), S. 387, Academic Press, New York 1973. – ^{11b)} G. N. La Mar, J. Chem. Phys. 43 (1965)
- ¹²⁾ J. Heinze, Angew. Chem. 96 (1984) 823; Angew. Chem. Int. Ed. Engl. 23 (1984) 831, und darin zitierte Literatur.
- ¹³⁾ R. Cosmo, C. Kautz, K. Meerholz, J. Heinze, K. Müllen, Angew.
- Chem. 101 (1989) 638; Angew. Chem. Int. Ed. Engl. 28 (1989) 604. ¹⁴⁾ ^{14a} B. Scharbert, *Dissertation*, Techn. Hochschule Darmstadt, 1988. ^{14b} J. W. Buchler, M. Kihn-Botulinski, B. Scharbert, Z. Naturforsch., Teil B, **43** (1988) 1371.

- ¹⁵⁾ M. Gouterman, J. Mol. Spectrosc. 6 (1961) 138.
 ¹⁶⁾ R. D. Shannon, Acta Cryst., Sect. A, 32 (1976) 751.
 ¹⁷⁾ J. W. Buchler, I. Kaufeld, unveröffentlichte Ergebnisse.
- ¹⁸⁾ J. Phelps, K. S. V. Santhanam, A. J. Bard, J. Am. Chem. Soc. 89
- ¹⁹ J. Flielps, K. S. V. Santhanam, A. J. Bard, J. Jin, Colon. Soc. 79 (1967) 1753.
 ¹⁹ Jao G. H. Barnett, M. F. Hudson, K. M. Smith, J. Chem. Soc., Perkin. Trans. 1, 1975, 1401. ¹⁹⁶ J. G. Stites, C. N. Mc Carty, L. L. Mc Quill, J. Am. Chem. Soc. 70 (1948) 3142. ¹⁹⁶ G. W. Pope, J. F. Steinbach, W. F. Wagner, J. Inorg. Nucl. Chem. 20 (1961) 304. ¹⁹⁶⁰ W. E. Geiger, T. E. Mines, F. C. Sentleber, Let (1975) 2144 Inorg. Chem. 14 (1975) 2141.